Combined cutting

 
Krytovaný HSG laser s výměnnými stoly a dlouhou rotační osou | HS-G3015E-F60
G3015E-4 G3015E-60 G3015E-601

Professional enclosed fiber laser cutter for sheets and sections 3000 x 1500 / 6000 mm

Catalog number: HS-G3015E-F60
Bestperformances: 500 - 4000 W
Desktop: 3000 x 1500
Maxmoving speed: 120 m/min.
Length ofthe rotational axis: 6000 mm
Positionalaccuracy: 0.05 mm
Changeabletables:
Recommended resources:
Let us designpricequotes
including costs for operations

HS-G3015E-F60 is designed for processing section material with a length of up to 6,000 mm and a diameter not exceeding 150 as well as for processing sheet material with maximum dimensions of 3,000 x 1,500 mm. The machine is enclosed with protective cover.

                The machine flat part construction is based on the type HS-G3015C with a drive in the form of a combination of servomotors and the system of a rack and a pinion. This system allows reaching high precision of 0.05 mm and high speed as well as allowed accelerated speed of 1.5 G. The advantages of this combination are reflected mainly in the processing of shape-demanding objects, as the work efficiency is higher by up to 40 %, compared to the M-series. The device is equipped with a fixed table with a working area sized 3,000 x 1,500 mm.

                The other part of machine is designed for processing sections with a length not exceeding 6,000 mm and a diameter of 150 mm. It uses an extremely precise principle of a tube laser; the material is fed through the rear chuck in the precisely controlled trolley, and through the front chuck up until it reaches the area under the cutting head. The rear chuck of the version F60 features a pneumatic, i.e. automatic design. The front through chuck is mechanical; however, it requires to be set only at the moment when you change the type of the section to be processed.

                The machine is controlled by two programs: CypCut - for 2D cutting, and CypCut Tube for section cutting. Source data for surface cutting are imported in the most common format .dxf, which can be generated from a variety of software programs. For section cutting, data are loaded in the format .iges. To prepare data for section cutting, the software Solidworks is highly recommended; the manufacturer guarantees its full compatibility. We supply both the software programs with two licenses; one is installed directly in the machine, whereas the other is intended for possible data preparation outside your device. The software is fully localized into the Czech language.

                The machine is supplied with cover protection. The energy from the laser source is not supplied to the place of cut by a mirror system as it was with obsolete CO2 lasers, but through an optical fiber in an armored cable. This design significantly simplifies machine operation and adjustments, increases machine reliability and its resistance to shocks in industrial operations.

 

The machine chassis is not to be sold separately; you can purchase it only together with the selected laser source.

 

Thanks to our pricing policy, the price includes the actual machine, its transport to the customer in the territory of the Czech Republic without any price increases, professional installation as well as commissioning and operator training. The main training is held immediately after the installation and it lasts about 8 hours; the other part of the training is performed free of charge after about thirty days from the delivery of the machine.

Foreign customers will receive the same services; however, they shall pay machine transport costs to the destination from the Czech borders. We always try hard to keep these costs at an acceptable level. On request, we will be happy to confirm binding calculations.

 

The given price of the machine includes:

  • Purchase of the machine with the selected laser source
  • Transport to the customer to any address in the Czech Republic
  • Complete installation of the device and its connection to power mains and gas mains
  • Staff training lasting max. 12 hours
    • The first part of training shall be held immediately after completing the installation and it shall last about 8 hours
    • The other part of training shall be provided after about thirty days of machine operation
  • Technical support in Czech or English
  • 2 software licenses for CypCut Tube - one installed in the machine, the other for possible data preparation

 

 

Description of the Production of Fiber Machine Chassis

 

In the manufacture, the CNC machine chassis is first heated up to a temperature of 600 °C and then gradually cooled down according to a pre-set scheme in a cooling box for the period of 24 hours. Its machining is then performed with a special milling cutter with a length of 8 meters. Any welds are performed exclusively in a protective atmosphere. Thanks to this procedure, we can guarantee long duration of this machine without any mechanical deformations.

Compared to the other laser types, fiber lasers feature the highest efficiency (CO2 laser - 10%, YAG laser - 2%, fiber laser – 30~35%). Thanks to the routing of the laser beam through the optical fiber, they do not need any complex internal optics to make adjustments or any other internal moving parts. Fiber lasers thus have low operating and maintenance costs as well as very long service life of up to 80 - 100 hours. Compared to the conventional CO2 lasers, fiber lasers feature higher energy density of laser beam (= laser beam energy is concentrated on a smaller area). This ensures much narrower cuts with sharp edges for the fiber lasers. Thanks to this fact, even cutting of very fine structures is possible. Much higher cutting speed then ensures less temperature interference around the cut and minimizes possible deformations of the material due to heat.

 

Source
Type:
Catalog number: I0500
Producer: IPG Photonics
Name: IPG 500W
Optical power: 500 W
Power Consumption: 4.00 kW (includingpowerlaser sourceradiator)
Wavelength: 1065 nm
Weight: 0 kg
Service life: 100000 h.
Description:

Fiber laser source IPG 500W

Machine
External dimension: 8500 x 3700 x 1900 mm
Weight: 8800 kg
Power consumptionwithout power: 13.20 kW (powerlaser sourceand aheat sinkis listed separately)
Max. velocity: 120 m/min
Max. acceleration: 1.5 G
Max. diameterof the rotarymember: 150 mm
Min. diameterof the rotarymember: 40 mm
Positionalaccuracy: 0.05 mm
Repeatedaccuracy: 0.03 mm
Drive: Servo motors
Transferdriving force: Toothed combs
Operating temperature: 15 - 40 °C
Working humidity: <90 %
Software: CypCUT Laser / CypTUBE
Graphic formats: DXF, PLT, Ai, LXD, GBX, NC G-kód
Machines covering:

Table of costs per metre of cut

The attached tables provide a look at the costs for 1 meter of cut for the individual performances of fiber sources. In order to prepare this data, it was necessary to count on the maximum available speed for a running meter of cut, i.e. without the effect of the acceleration parameters for the given type of machine. The price of the cut in this calculation consists of two basic parameters – electrical energy costs and consumed industrial gas costs.

Energy costs

The price of electrical energy is calculated from the average price per 1 kWh in the Czech Republic, the power consumption of the machine, and the time needed for cutting one meter of length.

Gas costs

The price of industrial gases normally used consists of 80-90% of the cost of the cut and therefore the cost of obtaining it is very important. Industrial gases can be obtained in three basic ways – in individual pressure cylinders, from a manifold, or as a liquefied gas, which comes in either a Eurocell tank sized like a normal palette or is pumped into a stationary tank at the customer site. The price of gas can vary widely because of the method of delivery and therefore the costs given here are for all 3 options. Liquefied gas always offers the lowest price, but is practical for customers only in the event of using their machine for most days of the year. This is because if the gas is not used from the tank, the safety electronics undertake to clean the valve about once a day and purge the gas part of it. In the event the machine is not used too frequently, costs can go up due to the gas losses that occur.

The gas costs used in the calculation are set according to the prices which we are currently able to guarantee customers in conjunction with our business partner LINDE. They are significantly lower than the prices in the official price list for this vendor. It should still be noted that, according to the information from our customers, noticeably lower prices can be obtained.

Laser consumables

The costs for consumables are not included in the calculation. We took this step in order to simplify the entire calculation and mainly because it will have minimum effect if included in the final amount.

For the proper use of a fiber laser, consumables consist of only two items – the nozzle and protective glass laser head. When correctly used, the nozzle can provide up to 1000 working hours before changing and our ordinary price for it is around 1,000 CZK without VAT. The protective glass laser requires cleaning because otherwise impurities can lead to local overheating by the transmission beam, resulting in clouding or cracks. We therefore recommend it be regularly cleaned at the beginning of the shift with isopropyl alcohol.  When properly clean, its service life is almost unlimited – up to 3000 hours. Its current price is 2,690 CZK without VAT.

In the calculation of costs, the nozzle and glass thus account for 2 CZK per hour of machine running time. For this reason, we did not consider it necessary to include these costs in the calculation.

Other costs not included

Also not included in the costs are the costs directly related to the cutting activity, i.e. staff costs, material or amortization of the machine.

Economic analysis of operation

In the event of interest, we will be happy to prepare a complete economic analysis of operating the machine. In order to create such an analysis, we require additional information from the customer, especially:

  • Drawing of the type of product to form the basis of the analysis.
  • Exact type of machine the customer is interested in
  • Type of material to be used in production

The economic analysis of operation will be able to include in the calculation of the machine the parameter called production efficiency. This parameter specifies the percentage of time when the laser is effectively cutting and the time when the material is being replaced, the head is crossing over, or other delays. The cutting speed here does not include tabular continuous speed, but in accordance with the complexity of the sample piece, the speed is adjusted according to the effect of the acceleration of the machine. In layman’s terms, this parameter specifies the extension of cutting time due to decreasing and subsequently restoring the speed of the cut during pass-through across a sharp angle in the drawing.

We can use the economic analysis to answer several questions:

  • How many pieces of the standardized product we are able to cut for a period of time (Shift, month, year…)?
  • Or – what type of machine do we need in order to produce the required quantity per unit of time?
  • If in current cooperation we pay xx CZK per cut, how long will it be before we get a return on our investment in the machine?
  • What power source and equipment for the machine are best for our production?

In the event you are interested in an analysis of laser operation in your company, feel free to contact us. We will try to prepare it in cooperation with you in the shortest possible time.

Other options for reducing costs per cut

We have listed in the table the costs per cut with a recommended type of industrial gas for the given type of material. From practice, however, it is necessary to add that for lower demands on the quality of the cut edge, it is possible to make cuts on some material using, for example, compressed air. The cutting time will be longer, the cut edge courser, but, for example, more than sufficient for subsequent welding. For using air, however, it is necessary to ensure that the compressed air will have not only enough pressure, but will also be completely free of oil and mechanical impurities. Oil residues in pressurized air can easily start to react with oxygen in the pressure line and so cause a fire.

Another option for reducing costs per cut is the offer of stainless steel, which, for preserving the maximum quality of the cut edge, is ordinarily cut using industrial nitrogen. Nitrogen cools around the cut and primarily prevents exothermic reactions, thanks to which the cut edge preserves its smoothness and the color of the material itself. When cutting with oxygen, the edge will be coarser and dark, similarly as when cutting with air, but using oxygen makes it possible to significantly increase cutting speed and the maximum strength of the material which the given machine is able to do.

 

Calculation of costs per 1 m of cut

Cutting speed of HSG fiber lasers